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Abstract

Maass は狭義類数 1 の実二次体上の Hecke 指標を用いて Maass 波動尖点形式を構成した [7].

本講演では, Maass の結果を拡張し, 一般の実二次体上で Maass 波動尖点形式を構成する. さら
に, 構成した Maass 波動尖点形式の Petersson 内積の明示公式を与える. Dihedral な Artin 表
現に対応する Hecke 指標を考え, それにより構成された Maass 尖点形式 の Petersson 内積を
代数体のレギュレータで表す.

1 導入
保型形式論において保型形式の構成問題は, 重要であり広く研究されている [8],[6],[15]. しかし, その
多くは正則な保型形式に関するものである. 本講演では Maass 波動形式という非正則な保型形式の
構成問題について著者が得た結果を述べる. 非正則な保型形式の明示的構成構成についての結果には
[13],[10] がある. 導入として, Maass 波動形式について正則な保型形式であるモジュラー形式と比較
して説明する. まず記号を導入する. S1 = {z ∈ C | |z| = 1}とし, χ : (Z/NZ)× → S1 を N を法と

した Diriclet 指標とする. また, Γ0(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣N | c

}
と定める. Maass 波動形式

とは, 複素上半平面 H = {z = x+ iy | x ∈ R, y > 0} 上で定義された次のような性質を持つ関数 Θ

のことである:
(1)Θ

∣∣∣∣(a b
c d

)
= χ(d)Θ, ∀

(
a b
c d

)
∈ Γ0(N);

(2)Θ は H 上で実解析的であり∆ = −y2
(
∂2

∂x2
+

∂2

∂y2

)
の固有値 1

4
− ν2 の固有関数である;

(3)Θ は Γ0(N) 尖点での増大度は高々多項式オーダーである.

ここで
(
a b

c d

)
∈ GL2(R)+ に対して,

(
Θ

∣∣∣∣∣
(
a b

c d

))
(z) := Θ

(
az + b

bz + d

)
である. また, (3)にお

いて尖点 c ∈ Q ∪ {i∞} における増大度が多項式オーダーとは次の意味である. γ ∈ GL2(Q)+ を
γ(i∞) = c なるようにとるときに, t ∈ R が存在して(

Θ
∣∣γ−1

)
(iy) = O(yt) y → ∞
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となることである. (2) はモジュラー形式における正則性 (Cauchy-Riemann 方程式) をラプラシア

ン ∆ に置き換えた条件とである. また, (1)は
(
Θ

∣∣∣∣∣k
(
a b

c d

))
(z) := (cz+ d)−kΘ

(
az + b

bz + d

)
とす

ることで重さ k のモジュラー形式の定義となるのでMaass 波動形式はモジュラー形式の類似とみな
せる. (1), (2), (3)から Maass 波動形式 は Fourier 展開することができて, その形は

Θ(z) = ayν+1/2 + by−ν+1/2 +
∑
n ̸=0

a(n)
√
yKν(2π|n|y)e2πinx

となる. ここで z = x+ iy ∈ H, かつ a, b, a(n) ∈ C である. 正則モジュラー形式には尖点形式とい
うものがあったがMaass波動形式にも尖点形式を定義することができ, それは (1), (2) に加えて次
の (3)′ を満たすものとして定める:

(3)′ Θ は尖点で急減少する. つまり, 各尖点 c ∈ Q∪ {i∞} に対して γ ∈ GL2(Q)+ を γ(i∞) = cと
なるよう取るとき, 任意の t ∈ R に対して (Θ ∣∣γ−1

)
(iy) = O(yt) y → ∞ が成り立つ.

(1), (2), (3)′ をみたす, つまり Maass 波動尖点形式の全体からなるベクトル空間を S(Γ0(N), ν, χ)

とかく.

(3)′ によって Θ ∈ S(Γ0(N), ν, χ) は

Θ(z) =
∑

n∈Z\{0}

a(n)
√
yKν(2π|n|y)e2πinx (1.1)

となることが分かる. ここで F を実二次体とし, J f
F を整イデアル f と素である分数イデアルのなす

群とする. つまり, J f
F = {I : F の 0でない分数イデアル |(I, f) = 1} とする. また, ψ : J f

F → S1 を
実二次体 F 上の f を法とする型が (ϵ, ϵ, νi ,−

ν
i ) (ただし ϵ ∈ {0, 1}, ν ∈ iR) の Hecke 指標とする.

(Hecke指標については 2 節を参照されたい.) ψ に対して Θψ を次式で定める:

Θψ(z) =


∑
a

ψ(a)
√
yKν(2πNF/Q(a)y) cos(2πNF/Q(a)x) if ϵ = 0,∑

a

ψ(a)
√
yKν(2πNF/Q(a)y) sin(2πNF/Q(a)x) if ϵ = 1.

このとき, 次の結果を得た.

Theorem 1.1. 原始的な Hecke 指標 ψ ̸= 1 が Dirichlet 指標 χ で χ ◦ NF/Q と表せないとき,

Θψ ∈ S(Γ0(DNF/Q(f)), ν, χDψfin) となる. ただし, イデアル I に対して, NF/Q(I) = #(OF /I) で
ある.

[7] では狭義類数 1かつ ν ̸= 0 の場合に Theorem 1.1 を証明したが, それを拡張した結果は著者の知
る限り見つからなかったので, 本講演ではこれを一般の場合に拡張できたことを紹介する.

モジュラー尖点形式に対して, Petersson 内積を定義することができたのと同様に Maass 波動尖点
形式についても Pertersson 内積を定義することができる. 後半では構成した Maass 波動尖点形式
の Petersson 内積の明示計算を与える. これは [14]で行われたモジュラー形式尖点形式についての



Petersson 内積の明示計算の一つの類似を与えている。最後に, 得られた結果を用いて Petersson 内
積の計算例を与える. [11], [5] により L-関数の代数的独立性が調べられているが, これらの例は, L-

関数の特殊値が Petesson 内積を通じて超越的な情報とどうかかわっているかを示している.

2 準備
Hecke 指標および Hecke L-関数についての基本的性質を復習する. 議論の多くは一般の代数体で可
能であるがここでは実二次体 F に限って記述する. 1節で定義した記号はそのまま説明なしに使う
ので注意されたい. 基本的な文献は [12]である.

Definition 2.1. ψ を準同型 J f
F → S1 について, J f

F と素である任意の a ∈ OF に対して

ψ ((a)) = ψfin(a)ψ∞(a)

となる準同型 ψfin : (OF /f)
× → S1 と連続準同型 ψ∞ : R× × R× → S1 が存在するとき ψ を f を

法としたの Hecke 指標という. ここで, 任意 a ∈ F の二つの実埋め込みを a(1), a(2) と書くとき
ψ∞(a) = ψ∞(a(1), a(2)) であることに注意せよ.

Remark 2.2.

1. ψ を f を法としたの Hecke 指標とするとき, ψfin や ψ∞ は一意的であり, ψ∞ は ϵ1, ϵ2 ∈
{0, 1}, ν1, ν2 ∈ iR を用いて ψ∞(x) = sgn( x1

|x1| )
ϵ1sgn( x2

|x2| )
ϵ2 |x1|ν1 |x2|ν2 と書ける. この

(ϵ1, ϵ2,
ν1
i ,

ν2
i ) を ψ の型という.

2. ψ を f を法とする Hecke 指標とする. f′ | f かつ f′ ̸= f となる整イデアル f′ と f′ を法とする
Hecke 指標 ψ′ が存在して ψ が ψ′ の J f

F への制限となるとき ψ は原始的でないという. そ
うでないとき ψ は原始的であるという.

Definition 2.3. (ガウス和) ψ = ψfinψ∞ を f を法とした原始的な Hecke 指標とする. また, d は
F/Q の共役差積とする. OK の整イデアル a を dfa が単項イデアルかつ (f, a) = 1 となるようにと
る. dfa = (a) (a ∈ K) としよう. このとき, ψ のガウス和 τK(ψ) を

τK(ψ) =
ψ∞(a)

ψ(a)

∑
x∈a mod fa

ψfin(x)e
2πiTr(x/a).

で定める. この定義において τK(ψ) は a, a の取り方によらない.

Theorem 2.4. 次が成り立つ.

• |τK(ψ)|2 = NF/Q(f)
• ψ1, ψ2 をそれぞれ f1, f2 を法とした原始的な Hecke指標とする. また, (f1, f2) = 1 とする.こ
のとき τK(ψ1ψ2) = ψ1(f2)ψ2(f1)τK(ψ1)τK(ψ2)となる.

次に Hecke L-関数の解析的性質について述べる. 実二次体 F 上の f を法とした Hecke 指標 ψ に対



して, Hecke L-関数を
L(s, ψ) =

∑
a

ψ(a)NF/Q(a)−s

で定める.

Theorem 2.5. ([9, p105]) F を実 2次体とし, D をその判別式とする. ψ を F 上の fを法とした
原始的な Hecke指標とし,その型を (ϵ1, ϵ2,

ν
i ,−

ν
i ), ϵ1, ϵ2 ∈ {0, 1}, ν ∈ iR とする.このとき,

Λ(s, ψ) = π−s (DNF/Q(f)
) s

2 Γ

(
s+ ϵ1 + ν

2

)
Γ

(
s+ ϵ2 +−ν

2

)
L(s, ψ)

は C 上に有理型関数として延長される. より詳しく ψ が自明指標でないときは C 全体で正則で,自
明指標のときは s = 1, 0 で一位の極を持ちその他の点で正則となる. また次の関数等式を満たす.

Λ(1− s, ψ) = T (ψ)Λ(s, ψ̄)

ここで
T (ψ) = i−ϵ1−ϵ2

τF (ψ)

NF/Q(f)
1
2

さらに, 任意の σ1 < σ2, t0 > 0 に対して, Λ(s, ψ) は σ1 < Re(s) < σ2, |Im(s)| > t0 上で有界で
ある.

Remark 2.6. Pharagmén-Lindelöf の定理から, Λ(s, ψ)は |Im(s)| → ∞ のとき, ∀σ1, σ2 に対し
て, σ1 < Im(s) < σ2 で一様に急減少する.

3 Theorem 1.1 の証明
この節を通じて 1 節で定めた表記に従う. ψ を f を法としたの Hecke 指標とする. ψ の型は
(ϵ, ϵ, νi ,−

ν
i ) であるとする. ここで ϵ ∈ {0, 1}, ν ∈ iR である. 本節の目標は. Theorem 1.1を示す

ことである. 証明に際して次の二つの補題を用意する.

Lemma 3.1. ([3, p.106]) s ∈ C, ν ∈ iRに対して次が成り立つ:∫ ∞

0

Kν(y)y
s dy

y
= 2s−2Γ

(
s+ ν

2

)
Γ

(
s− ν

2

)
.

Lemma 3.2. ([3, p109])

f ∈ C∞(H)を ∆の固有関数とする. f が実解析的で各 y > 0にについて f(iy) =
∂f

∂x
(iy) であるな

らば f = 0である.

3.0.1 Theorem 1.1 の証明の概略
手法は, Weil の逆定理の方法で Hecke L-関数の解析的性質に帰着させる. 証明の流れは同様である
が,偶奇性で微妙に異なる計算になるため ϵ = 0, 1 で場合分けが必要になる. ここでは, ϵ = 0 のみ述



べる. Re(s) > 1 のとき Θψ の Mellin 変換は∫ ∞

0

Θψ(iy)y
s− 1

2
dy

y
=

1

4
(DNF/Q(f))−s/2Λ(s, ψ)

となる. Mellin 逆変換公式より R > 1 なる任意の実数 R に対して,

Θψ(iy) =

√
y

8πi

∫ R+i∞

R−i∞
(DNF/Q(f))−s/2Λ(s, ψ) y−s ds (3.1)

となる. Pharagmén-Lindelöf の定理から, Λ(s, ψ) は |Im(s)| → ∞ のとき, ∀σ1, σ2 に対して,

σ1 < Im(s) < σ2 で一様に急減少する.このことと Cauchyの積分定理から, 式 (3.1)は任意の実数
R ∈ R で成り立つ. Theorem 2.5を適用して

Θψ(iy) = T (ψ)Θψ̄
(
(DN(f))−1y

)
となるので, Lemma 3.2より

Θψ = T (ψ)Θψ̄

∣∣∣∣( −1
DNF/Q(f)

)
(3.2)

を得る.

ここで inert prime p で p ∤ N(f) なるものを固定する. (指標とは限らない)写像 σ : (Z/pZ)× → S1

に対して, fσ,ψ を次のように定める：

fσ,ψ :=
∑

m mod p
(m,p)=1

σ̄(m)Θψ

∣∣∣∣(p m
p

)
(3.3)

また, ρ : (Z/pZ)× → S1 を ρ(m) := σ(r) (−rmDN(f) ≡ 1 mod p) によって定義する.

このとき次が成り立つ：

fσ,ψ

∣∣∣∣( −1
DNF/Q(pf)

)
= −T (ψ)ψfin(p)fρ,ψ̄ (3.4)

写像 (Z/pZ)× → S1 の全体のなす空間は Dirichlet 指標 の線型和で書けるから, σ は Dirichlet 指
標と仮定してよい. このとき ρ(m) = σ̄ (−DN(f)) σ̄(m) となるから式 (3.4) は

fσ,ψ

∣∣∣∣( −1
DNF/Q(pf)

)
= −T (ψ)ψfin(p)σ

(
−DNF/Q(f)

)
fσ̄,ψ̄ (3.5)

となる.以下で, 式 (3.5) を示す. 以下の三つの場合に分けて証明する.

• Case 1: σ が原始的で σ(−1) = 1の場合
• Case 2: σ が原始的で σ(−1) = −1の場合
• Case 3: σ = 1の場合

ここでは, Case 1 のみ示す. Case 2 場合の証明は Case 1 同様であり, Case 3 の場合は Case 1 や
Case 2 より優しいので省略する. fσ,ψ(iy)の Mellin 変換は∫ ∞

0

fσ,ψ(iy) y
s− 1

2
dy

y
= 1

4 τQ(σ̄) (DNF/Q(f))−s/2 Λ(s, (σ ◦ NF/Q)ψ)



と計算されるので, Mellin 逆変換公式によって

fσ,ψ(iy) =

√
y

8πi
τQ(σ̄)

∫ R+i∞

R−i∞
(DNF/Q(pf))−s/2Λ(s, (σ ◦ NF/Q)ψ) y−s ds, (R > 1).

よって Theorem 2.5 および Remark 2.6 により

fσ,ψ(iy) = −ψfin(p)σ(−DNF/Q(f))T (ψ) fσ̄,ψ̄

∣∣∣∣( −1
DNF/Q(pf)

)
(iy)

となり, さらに Lemma 3.2 を適用して

fσ,ψ(z) = −ψfin(p)σ(−DNF/Q(f))T (ψ) fσ̄,ψ̄

∣∣∣∣( −1
DNF/Q(pf)

)
を得る. 式 (3.2), 式 (3.4)を用いて保型性を示す. m, r ∈ Z を

−DNF/Q(f)mr ≡ 1 (mod p)

となるようにとり, s ∈ Z を
ps−DNF/Q(f)mr = 1

となるよう取る. これに対して関数 σ(n) を次で定める：

σ(n) =

{
1 (if n ≡ m (mod p)),

0 (if n ̸≡ m (mod p)).

つまり, σ(n) は n ≡ m (mod p) のときのみ 1 をとる写像である. このとき, ρ は

ρ(n) =

{
1 (if n ≡ r (mod p))

0 (if n ̸≡ r (mod p))

である. 式 (3.5)を適用して,

Θψ

∣∣∣∣(p m
p

)(
−1

DNF/Q(pf)

)
= −T (ψ)ψfin(p)Θψ̄

∣∣∣∣(p r
p

)
よって式 (3.2) 用いると, 保型性が導かれる.

Θψ

∣∣∣∣(p m
p

)
=− T (ψ)ψfin(p)Θψ̄

∣∣∣∣(p r
p

)(
−1

DNF/Q(pf)

)
=− ψfin(p)Θψ

∣∣∣∣( −1
DNF/Q(f)

)(
p r

p

)(
−1

DNF/Q(pf)

)
=− ψfin(p)Θψ

∣∣∣∣( p −m
−DrNF/Q(f) s

) (
p m

p

)
.

従って
Θψ = −ψfin(p)Θϕ

∣∣∣∣( p −m
−DrNF/Q(f) s

)
(3.6)



となる.

χD(a) = −1となる
(
a b

c d

)
∈ Γ0(DNF/Q(f)) に対して Dirichlet 算術級数定理より

(
1 u

1

)(
a b
c d

)
=

(
a+ uc b+ ud
c d

)
=

(
p ∗
∗ ∗

)
(p はある素数)

となる u ∈ Z をとるとき χD(a) = −1 ゆえ χD(p) = −1 となるから, 式 (3.6) から

Θψ =− ψfin(p)Θψ

∣∣∣∣(a+ uc b+ ud
c d

)
= −ψfin(p)Θψ

∣∣∣∣(a b
c d

)
=χD(a)ψfin(a)Θψ

∣∣∣∣(a b
c d

)

となる. χD(a) = 1 となる
(
a b

c d

)
∈ Γ0(DNF/Q(f)) は χD(a) = −1 なる Γ0(DNF/Q(f)) の元の積

でかけるので保型性は成り立つ. 最後に尖点での挙動について概要を述べる. l ∈ Z≥2 と l を法とす
る Dirichlet 指標 σ に対して, l が素数でなくても fσ,ψ を式 (3.3) によって定める. 保型性の証明同
様に Mellin 変換によって fσ,ψ は Hecke L-関数の積分で表示できる. Hecke L-関数の Im(s) → ∞
での挙動については Theorem 2.5 によってわかるので, 積分表示から fσ,ψ(iy) の y → +0 の挙動が
分かるので, m = 0, 1, · · · ,m− 1 に対して Θψ(iy +

m
l ) の y → +0 での挙動が分かる.

4 Petersson 内積の計算例
ここでは, Theorem 1.1 で構成した Maass 波動尖点形式の Petersson 内積の明示公式を与え, その
具体例を与える. 引き続き, Section 1 の表記を用いる.

Definition 4.1. Θ1,Θ2 ∈ S(Γ0(N), ν, χ) とする. Θ1 と Θ2 の Petersson 内積を次式で定める:

⟨Θ1,Θ2⟩ =
∫
Γ0(N)\H

Θ1(z)Θ2(z)
dxdy

y2
.

Section 3 で構成した Maass 波動尖点形式の Petersson 内積は次で与えられる.

Theorem 4.2.

⟨Θψ,Θψ⟩ =
1

4π
ϕ(DNF/Q(f))−1(DNF/Q(f))2Γ

(
1 + 2ν

2

)
Γ

(
1− 2ν

2

)

×

 ∏
p : split,p∤f

NF/Q(p)|NF/Q(f)

(1− NF/Q(p)−1)−1

×

 ∏
p|DNF/Q(f)

(1− p−1)(1− χD(p)p
−1)


× Ress=1(ζF (s))L(1, ψ(ψ̄ ◦ σ)).

ここで,σ は Gal(F/Q)の非自明な元で ϕは Euler 関数である. また, χD は 実二次体 F に関する二
次指標である.



ここでは, Theorem 4.2 の証明はしない. 近日, Arxiv に論文を投稿予定なので, そちらを参照され
たい.

最後に, ⟨Θψ,Θψ⟩ の計算例を与える. そのために, 古典的に知られている次の結果を使う.

Theorem 4.3. K を代数体とする. K に付随する Dedekind ζ-関数 ζK の s = 1 での留数はつぎ
で与えられる:

Ress=1(ζK(s)) =
2r1(2π)r2RKhk

wk
√
DK

.

ここで, r1, r2 は K の実埋め込み, 虚埋め込みの個数であり, wk はK に含まれる 1のべき根の個数
である. また, RK , hk, wk, Dk はそれぞれ K のレギュレータ, 類数, 判別式である.

類数 3の例として次のような状況を考える. F = Q(
√
229), L は F の Hilbert類体とする. F の類

数は hF = 3 より, [L : F ] = 3 である. α を X3 − 4X − 1 の根とし K = Q(α) とすると, L = KF

である. L/Q は Galois拡大であることに注意せよ. CF をイデアル類群とする. Gal(L/F ) の非自明
な指標 ψ′ : Gal(L/F ) ∼= Z/3Z → S1 をとって, Hecke 指標 ψ を次のような合成で定義する:

J1
F

canonical−−−−−−→ CF
recF−−−→∼= Gal(L/F )

このとき, L は総実代数体なので, ψ の型は (0, 0, 0, 0) である. また, f = 1, D = 229 として
Theorem 4.2 を適用して

L(s, ψ(ψ̄ ◦ σ)) =
∏

p⊂OF

(1− ψ(p)2N(p)−s)−1 = L(s, L/F, ψ′2)

=L(s, L/Q, IndGal(L/Q)
GalL/Q ψ′2) = L(s, L/Q, ρ)

=
L(s, L/Q, IndGal(L/Q)

Gal(L/k) 1)

L(s, L/Q, 1)
=
ζK(s)

ζ(s)

ここで ρ は Gal(L/Q) ∼= S3 の二次の規約指標である. よって L(1, ψ(ψ ◦ σ)) = Ress=1(ζK(s)) と
なる. 以上から, RF , RK を F,K のレギュレータとすると,

⟨Θψ,Θψ⟩ = 24RFRK ≈ 153.338132534474 · · ·

を得る. 判別式が 2000以下で類数 hF = 3 なる場合の計算例は表 1 に載せておいた.

次に類数 5の例を考える. 類数 5のときは代数体の不変量のみで明示的に書くことはできていないが
Artin L で記述できることをみる. F = Q(

√
401)とし, L を F の Hilbert 類体とする. F の類数は

hF = 5 なので, [L : F ] = 5 である. β を多項式 X5 −X4 − 5X3 + 4X2 + 3X − 1 の根とすると, L

は L = F (β) となる. 非自明な指標 ψ′ : Gal(L/F ) ∼= Z/5Z → S1 をとり, Hecke指標 ψ を次のよ
うな合成で定める:

J1
F

canonical−−−−−−→ CL
recF−−−→∼= Gal(L/F ) → S1.

このとき, L(s, ψ(ψ ◦ σ)) = L(s, ψ′2, L/F ) であるので, Theorem 4.2を適用して,

⟨Θψ,Θψ⟩ =
5

2

√
401RFL(1, ψ

′2, L/F )



を得る. ここで RF は F のレギュレータである. この場合で Petersson 内積をレギュレータで明示
的に表示することが困難であるのは二面体群 D5 には有理表現でないものがあるからである. S3 の
ように有理表現のみを持つ群に関しては Stark [14] により中間体の Dedekind ζ-関数の留数の積で
かけることが分かっているため, 類数 3の場合はレギュレータで明示的に表示できたのである. しか
しながら, Ind

Gal(L/Q)
Gal(L/F )(ψ

′2)
⊕

Ind
Gal(L/Q)
Gal(L/F )(ψ

′4) は有理表現であって, 実際に指標の計算をすること
で Ind

Gal(L/Q)
Gal(L/F )(ψ

′2)
⊕

Ind
Gal(L/Q)
Gal(L/F )(ψ

′4)
⊕

1 ∼= Ind
Gal(L/Q)
Gal(L/K)1 という表現の同型が存在することが

分かるので, 次の等式を得る:

⟨Θψ,Θψ⟩
〈
Θψ2 ,Θψ2

〉
= 100R2

FRK ≈ 12489.3392834563 · · ·

ここで RK は K のレギュレータである. より大きい素数類数の実二次体でも同様の等式を得ること
ができる.



以下に判別式が 2000 以下かつ類数 3 の実二次体 F についての上の例と同じように Hecke 指標を
とって Θψ を定めるときの, Petersson 内積の計算結果をまとめた. L = FK は F の Hilbert 類体
である. また, 表 1 の例はすべて Lが総実代数体であり, 従って ψ の型は (0, 0, 0, 0) であることを
述べておく. 結果として, D = 1957 の例では ⟨Θψ,Θψ⟩ = 48RFRK であり, それ以外のすべての
例で ⟨Θψ,Θψ⟩ = 24RFRK となった. 計算して気づいたことは K の類数 hK が D = 1957 では
hK = 2, その他の例では hK = 1 となることだけであるが, 直接の因果関係については分からない.

F の判別式 K を与える多項式 ⟨Θψ,Θψ⟩

229 X3 − 4X − 1 24RFRK ≈ 153.338132534474 · · ·
257 X3 −X2 − 4X + 3 24RFRK ≈ 164.288312812200 · · ·
316 X3 −X2 − 4X + 2 24RFRK ≈ 476.671900506020 · · ·
321 X3 −X2 − 4X + 1 24RFRK ≈ 373.906198803442 · · ·
469 X3 −X2 − 5X + 4 24RFRK ≈ 385.974675403784 · · ·
473 X3 − 5X − 1 24RFRK ≈ 352.038810858185 · · ·
568 X3 −X2 − 6X − 2 24RFRK ≈ 826.323808728937 · · ·
733 X3 −X2 − 7X + 8 24RFRK ≈ 420.123429359158 · · ·
761 X3 −X2 − 6X − 1 24RFRK ≈ 624.385173601948 · · ·
892 X3 −X2 − 8X + 10 24RFRK ≈ 1219.47287214903 · · ·
993 X3 −X2 − 6X + 3 24RFRK ≈ 1143.05632028698 · · ·
1016 X3 −X2 − 8X + 10 24RFRK ≈ 1515.54846333741 · · ·
1101 X3 −X2 − 9X + 12 24RFRK ≈ 1300.42423105114 · · ·
1229 X3 −X2 − 7X + 6 24RFRK ≈ 702.577174538125 · · ·
1257 X3 −X2 − 8X + 9 24RFRK ≈ 1817.41893556155 · · ·
1304 X3 − 11X − 2 24RFRK ≈ 1853.94787535224 · · ·
1373 X3 − 8X − 5 24RFRK ≈ 816.743621133275 · · ·
1436 X3 − 11X − 12 24RFRK ≈ 2005.36239366819 · · ·
1489 X3 −X2 − 10X − 7 24RFRK ≈ 1541.21730852376 · · ·
1509 X3 −X2 − 7X + 4 24RFRK ≈ 1687.45057825062 · · ·
1772 X3 −X2 − 12X + 8 24RFRK ≈ 2502.87047104155 · · ·
1901 X3 −X2 − 9X − 4 24RFRK ≈ 1555.03213827395 · · ·
1929 X3 −X2 − 10X + 13 24RFRK ≈ 3816.49525210154 · · ·
1957 X3 −X2 − 9X + 10 48RFRK ≈ 1493.04499124585 · · ·

表 1 判別式が 2000以下かつ類数 3の実二次体上 Hecke指標についての Petersson内積
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