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Abstract

Maass 1FPRFBE 1 DE ZKIK 1D Hecke 168 % VT Maass IKEIR B 2R L 72 (7).
REHETIX, Maass DGR ZINRL, —fROE XK ET Maass INEIR SR EZELTZ. 5
12, MR L 7= Maass IREIRME D Petersson WHEDIHRAR % 5 % 5. Dihedral 7 Artin 32
BIzxtd 5 Hecke 615 %2 & 2, 22 X D X 117z Maass ReJER @ Petersson NfE%
REEDL F 21 —&THRT.
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Z FEAIRREEARICE S 2 0 D TH 5. A TIE Maass IENE K & v 5 JEERI 2 RAE XD
RIS DWW TEE DM AR E BN B . FEERI R R X O BRI R A D W T ORGSR
[13],[10] 233 %. FEA ¥ LT, Maass KB RICOWTIERIRHFAERTH 2 Y 2 5 — R v LHilg
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LB THS. (2) FEY 27— WBT 5 ERIE (Cauchy-Riemann F1ER) 27 75> 7

(0 2)) oo (t) oo

5L THX kLDEY27—FROEFL K SDT Maass IHETERIFEY 2 7 - FX0FM L A%
5. (1), (2), (3) 7»5 Maass IKENEIN 1 Fourier BT 25 Z &3 TET, 2D

VA EBERZILFNETDHS. 2, (1) 1F (@

@( )_ayy+1/2+by 1/+1/2+Z \[K (27T‘7’L‘y) 2minx
n#0
%%, ZZTz=x+iy € H, 2D a,ba(n) € C TH5. [EHIEY 2 7 - IcFRAFERX v
5% DHB o 7275 Maass WHIERIC S RATGREERT 2 2 LHTE, 200 (1), (2) KMATK
D (3) FiLTHOYL LTED S:

(3)© BRATEABDPT 5. 2D, BRA c € QU {icc} LT v e GL(Q)t % 7(icc) =c &
%5 E5MBE RO t e RIHLT (O]y71) (iy) =0(y') y— oo HELDILD.

(1), (2), (3) &&A%=F, DD Maass WEIRAVRO LMD 57527 W% % S(To(N), v, X)
L
(3) 1Ick>T © € S(Ty(N), v, x) 13

O(z) = Y a(n)yyK,(2r|nly)e* " (1.1)

n€Z\{0}
YIRB DB, TITF REIRKKE L, JL #EAF T L RTHINBAFTADRT
Br32. 0%kb, JL={[:FOOTRGEAFTL|([§) =1} 35, £/, ¢: J, - S' %
FEZXIKF LD §f2EE T 280 (e,6,%,-%) (72721 € € {0,1},v € iR) ® Hecke 5t & 7 5.

’z’ 7

(Hecke $8EICDWTIE 2 BB NV ¢ KH LT Oy 2RATED 2

}jw a) VK, (27N o(a)y) cos(2nNpg(a))  if € = 0,

Oy(z) =
1/1( ) Zw(a)\/@KV@WNF/Q(a)y) Sin(QWNF/Q(a)x) ife=1.

DL E, ROFERERF 2.

Theorem 1.1. 417 Hecke #6545 ¢ # 1 2% Dirichlet #5888 x T xoNpjg ERER VL &,
Oy € S(To(DNpyg(), v, Xptan) £ 5. FFEL, 4 F7 4 LIEH LT, Npjg(I) = #(Or/I) T
H5.

[7] TIEEFREL 1L 2D v # 0 DHFAEI Theorem 1.1 ZEERA L7228, 22 HE0R L 725 RIEEEHE ORI
ZIRDBOD 540 -70T, K#HTIEINE - ROGEIHIRTE L Z L ZHNT 5.

EBY 2 7 —REJERITH LT, Petersson NEEZEFRT 2 Z & 23T E D & FAFRIC Maass RENZ A
FERITDOWT D Pertersson WHEZEFRT 5 Z D TE 5. BRPETIIMEK L 72 Maass IBIRRER
D Petersson NEDIREIE %252 5. Zhud [14] TITbIZEY 2 7 —FRRAERIcOo0wTo



Petersson NIEDHHREIED—DODEME 5 2 TW5, wmRIC, BN MER%E HWT Petersson
BOGHEAIZ 52 5. [11], [5] 1T & D L-BAB O RBIHNLED TR SN TV 2, 2o DfilZ, L-
BEEL DFFRMEDY Petesson NFEZ 8 U CTEBHRIEHRE £ 2000 T0ERERLTWVS.

2
Hecke 68235 X Of Hecke L-BEUCOWTOE RPN EZ1EE T 5. #FEimDZ T —KOREKTH]

RECTHADZ ZTEEKIK F IR Ttk 3 2. 1 HiTERLALELESIZZOE EHALRLICMHES
DTHEE SNV, BEARNZSHIE [12] TH 5.

Definition 2.1. ¢ ZHEFT JI - S 120WT, J, L BTHBEED a € Op ITHLT
¥ ((a)) = Yain(a)vos(a)

L7 BRI o s (Op/f) — SU L FERHERA ) RX x RX — S! BT 5L % o % | &
#r LD Hecke 5 WS, 22T, FE a € F D _oDEHDAAZ oV, o® pEL L X
Voo(a) = Yoo (aV),a?) TH B Z L ITHEEY .

Remark 2.2.

1.y % §f 212 L7=D Hecke FEfEE T2 L X, gy R Yoo E—EWTHD, Y 1T 61,60 €
{0,1}, v1,v2 € iR ZHWT ¢o(x) = sgn(‘i—i‘)elsgn(é—zl)ﬁﬂxﬂ”l|x2|”2 LEHEIS o
(cre2 . 2) & DBEVS.

2. b & §RIEL TS Hecke 5L T2, F || D f £ LBBHAFT AT & §f #IEL TS
Hecke 1652 o/ MFELT o 23 ¢ @ JL ~AOHIRE 722 & % o FEBKNTHROE WS, Z
ITHRVEZ ¢ BEMAKNTHZ NS,

Definition 2.3. (FV A1) ¢ = Yantheo & §f ZIEE L2HIBHIR Hecke FEIRE T5. F72, 0 1
F/Q of1%7%Er 35, Ox DA F7)V a % ofa BHIEA T 740D (f,a)=1 RdE5CL
5 fa=(a) (@eK)LLES. COLE o OHY A () %

TK(w) _ Yoo (CL) Z ¢ﬁn(l')€2ﬂiTr(x/a).

'lﬂ(a) r€a mod fa
TEDD. ZOERICBVT 75 (¢) & a, a DEIDHITX SR,

Theorem 2.4. XAK D 37D.

o [mc(¥)* = Npsq(f)
o U1, ho BZNZN f1, fo UL LRI Hecke 882 5. £72, (f1,f2) =1 ¢3%. 2

D& T (P1v2) = Y1 (F2) 2 (F1) T (V1) Tr (o) 725
iz Hecke L-FAEKDEMTEIMEEICOWTIHER S, HEZRIK F LD §f 2152 U7z Hecke F81E ¢ 128t



L T, Hecke L-BE%%
L(s,9) = > ¥(a)Np/g(a)~*

TED .

Theorem 2.5. (]9, pl05]) FF #FE 2 Xk L, D 2204 35. v & F Lo fRikr Lk
JF BRI 72 Hecke fE1%Z 2 L, Z DRl % (61,62,%,—%), €1,€2 € {0,1},V ciRed§5.20k %,

A(s,0) = 7 (DNpjg(f)F T <5+61+V> r <5+62+—V

. L) s
3 C EIcEHRBEKRYE LTIEEXNS. KDL ¢ PEBEE TR VW 213 C 2K CEHIT, B
BHfEED E 21X s = 1,0 T—OMZ S ZDOMO R TIEAlE 72 5. £ ROBEMEZ T .

A(l -5 w) - T(WA(SW/J)

0y
0y
A

7F(¥)
Nr/o(f)?
X B, EED 01 < 09, tg > 0 IR LT, A(s,¥) 1& 01 < Re(s) < o2, [Im(s)| > to L THRT
5.

T(y) =i~

Remark 2.6. Pharagmén-Lindelof O EHD &, A(s, 1) 1& |Im(s)] — oo D& X, Yoy, o9 ITHL
T, 01 <Im(s) < oo THRICEBDT 3.

3 Theorem 1.1 3EEA

COHiZ@ELT 1 MiTEDLRLIIMKS. ¢ & §f L L7zD Hecke faf5 5. ¢ ORIZ
(6,6,%,-2) THoE9%. TIZTec{0,1},vciR TH2. AEDHFZ Theorem 1.1 Z/RT
e TH5. FEHICERL TROZSDffiEZHET 2.

Lemma 3.1. ([3, p.106]) s € C, v € iR T L TR D IZD:

> dy o [s+V s—v
v = =2°T r .
/0 ooy < 2 > < 2 )

Lemma 3.2. ([3, p109])
fEC>®MH) % A DEFBEKE T2, fHOEBRITHITE vy > 012DV T f(iy) = gi(z’y) Th 3%
LI f=0Th3.

3.0.1 Theorem 1.1 MEEFADEIEE
FIEIZX, Weil OWEH D T7ET Hecke L-BIE DT E ICIRE X2 5. SEFHORAUIFETH 5
S ABF I CHMINICE R 23 EICHR 272D e =0,1 THEDIBIDREIIKRS. ZI T, e =0 DARD



~N%. Re(s) >1 0t % 0y ® Mellin Z#ud

o o eo1 d
/ O, (iy)y" % 2
0 )
£72%. Mellin #ZHANRED R> 1 R2EEDEK RITHNLT,

= i(DNF/Q(f))_S/QA(Sﬂ/))

R+i00
Oulin) =L [ (DNeyo(f) /A5, w) v ds (.1)

¥ 72 %. Pharagmén-Lindelof DEHH &, A(s,¢) & |Im(s)] — oo D& X, Voy,00 TR LT,
o1 <Im(s) < o9 THRRICABD T 2. 2D Z & & Cauchy OFEZEHD 5, R (3.1) IFEREDFEE
R e R THDILD. Theorem 2.5 Z A L T

Oy (iy) = T() ©5 ((DN(f) ~'y)

£725MDT, Lemma 3.2 &Y

1
Oy =T(¥) @w‘ <DNF/@(T) > (3.2)
2155,
Z 2T inert prime p T ptN(f) %2 b 0% EET 2. (IEFELIERSRV) Eho: (Z/pZ)* — S*
WKHLT, fop BRDEDITED S :

fouw = Z a(m)Oy ‘ (p 7;:) (3.3)
m mod p
(m,p):l

F7z, p: (Z/pZ)* — S* % p(m) == o(r) (—rmDN(f) = 1 mod p) IZX>TEFKT 3.
DL ERMBED LD -
-1
e R L 3.4
B (Z/pZ)* — St O&kD 43 22/1% Dirichlet 1658 OFRBEIFITEIF 255, o & Dirichlet $&
e RELTEWN. ZOr & p(m) =05 (—DN(f))a(m) #2253 (3.4) X
-1

faﬂl) ‘ (DNF/Q(pf) ) = _T(w)¢ﬁn(p)a (_DNF/Q(f)) fc‘r,q]) (3'5>

7% IR TC, X (3.5) 2-3. UTFDO=2D5EIT7 I CitiT 5.

e Case 1: 0 DFEMHIT o(—1) =1 DHE
e Case 2: 0 DFEMHIT o(—1) = —1 DH{FE

e Case 3: 0 =1 DA

Z 2T, Case 1 DART. Case 2 HEDFEHIX Case 1 FEETH D, Case 3 DIHEE Case 1 %
Case 2 X DBELVWOTEKT 5. f,4(iy) © Mellin 253

/0 Fouliy) =t C;y — Lrg(8) (DNpg(f)~*/2 A(s, (0 0 Npg)uh)



LEAEXINZ DT, Mellin WZEBRARICE T

R+i00
fou(iy) = vy 79(0) / (DNpyg(p)~*/?A(s, (0 0 Npjg)) y~>ds,  (R>1).

8mi

R—1i00

X o T Theorem 2.5 B X X Remark 2.6 {2 XD

Fos i) = = na(9) (- DNeg T s (g, oy ) )

kb, X512 Lemma 3.2 ZEH LT

fou(2) = = sn(p) o(=DNpyo(f)) T(¥) f5,5 ’ <DNF/@(pf) _1)

282, % (3.2), R (3.4) ZACTHEEME RS, mr e Z %

—DNg/g(f)ymr =1 (mod p)

ErBE512D, s %
pS—DNF/Q(f)mr: 1

Y75 E5HB. SAUSK LTHIMK o(n) BRTEDS |

U(n):{l (if n=m (mod p)),
0 (ifn#m (mod p)).

DFED,on)En=m (mod p) DEEDA 1 2L 2FEH{RTHL. ZOLZE, plk

o) = {1 (ifn=r (mod p))
0 (fnzZr (modp))

Ths. A (3.5) ZHEHLT,

0| (" %) (ot ) = Tmiec|(* )
EoTRK (3.2) Hva &, AEMEIEINS.
Oy ’ (p 7;) = —T(Y)Ysn(p)Oy ‘ <p ;) <DNF/Q(pf) _1>
=009 (omgoy ) C p) (omeetn )
o |(_put o ) ()

E-T



5.

xp(a)=—-1t7%% (a
c

1 w\fa b\ (at+uc b+ud\ (p * .
( 1> <c d>_< c d >—<* *) (p 135 5 %K)

YRBUELEREBLE ypla)=—1 80X xp(p) = —1 L5505, X (3.6) 25

<a+uc b—i—ud) — an(0)Oy (ch Z)

Z) € Do(DNp/q(f)) &%t LT Dirichlet HATHREER & b

Oy = — Ysn(p)Oy . d

(¢ 4

Z) € I'o(DNp/o(f)) & xp(a) = =1 %% I'o(DNp/q(f)) DILOM

=XD(a)Vin(a)Oy

a

7%, xpla)=1¥t7%% (
c

THT 2D THREMEIZR D LD, RIRICRFTOEFNIONWTHEZBRS. [ € Zsy & | ZIKET
% Dirichlet 6% o I LT, | BRETRLTD fop, 2 (3.3) Lo TED 5. REMNEDFERARF
BRIZ Mellin 2412 X 5T fo (& Hecke L-BIDIET TRRTE 5. Hecke L-BARID Im(s) — oo
TOZEFITOWTIE Theorem 2.5 IZX o THRSDT, MOTRRDD fou(iy) Dy — +0 OFEHH
BBDT, m=0,1,--- ,m—1IZHNLT Ou(iy+ ) Dy — +0 TOEEHHIH5.

4 Petersson RFEDETEH

Z 2T, Theorem 1.1 THEK L 7z Maass IKEIZRATED Petersson NEDOHRARZ 5 X, 2D
BiREI% 52 5. 5| &#i %, Section 1 DRILZH V3.

Definition 4.1. ©1,05 € S(I'((N),v,x) £55%. O1 £ Oy O Petersson NFEZ XX TED 5:

—dwd
<@1,@2>:/ 01 (2)02(2) Y.
Lo (N)\H Yy

Section 3 THiRKL L 7= Maass IHEIR SN D Petersson NEIZRXTEZ 51 5.

Theorem 4.2.

x [ «a-NrQE™H! X( I1 (1p1)(1xD(p)pl)>

p: split,ptf p|DNg /o (f)
Np/q(p)INg/g(f)

X Ress:l(gF(S))L(L 1/}(7/; o U))

Z 2T, ¥ Gal(F/Q) ®IEEBARITT ¢ 1X Euler BA%TH 2. £/, xp & EZXK F cf5 5=
RIEFETH 5.



Z ZTlX, Theorem 4.2 OFEFHIZ L2\, 3EH, Arxiv ICHXERFETERDT, 2552 B XN
VAN
&RIZ, (0y,0y) OFtEHIZE 2 5. ZD7DIZ, HHMANCHISN TV S ROFERZES.

Theorem 4.3. K ZREAL T 5. K 123 % Dedekind (-B# (x @ s =1 TOHEIOE
THZoN%:

2M (QW)TQRth
Res,— = )

€S 1(<K($)) wk\/ﬂ
ZZT,r, o & K OFEHRDIAA, BHDAADEBTDH D, wi 13 K TEENE 1 DX ZROEEL
ThHb. ¥72, Ri, hy,, wy,, D, 3ZHNFN K DL ¥ 2L —&, B, AR Th 3.

B3 0Bl LTRO XS RIRMEEZ S, F =Q(V229), L & F @ Hilbert k5%, F O
Bix hp=3 &0, [L:F]=3T»%.a% X3 4X-10ReL K=Q(a) ¥3%, L=KF
TH%. L/Q 1Z Galois IEKTH 2 Z L THFEBE X. Crp 24 T 7NV §5%. Gal(L/F) OIEHH
P2 o) Gal(L/F) 2 7Z/37 — S % ¥ 5T, Hecke {812 o XD X 5 BRERTERT %:

J}v canonical C].' re;F Gal(L/F)

ZorE L 3BREREKLZOT, v B (0,0,0,0) THZ. F/, f=1,D =229 LT
Theorem 4.2 Z@H L T
L(s,p(hoo)) = J] (1—¢(p)°N(p)~*)~" = L(s,L/F,¢")

pCOF
=L(s, L/Q,Indg (" Pv?) = L(s, L/Q, p)
_L(S,L/@,Indggigfj%)n x(s)
L(s,L/Q,1) ¢(s)
ZIZT p i Gal(L/Q) = S5 D ROBKHEIETH 2. £ T L(1,9(¢p 00)) = Ress—1(Cx(8)) &
7%, D bhS, Re, R % F,K DL¥a2lL—Xr35L,

(Oy,0y) =24Rp Rk ~ 153.338132534474 - - -

2152 HHIA 2000 LU CHEE hr = 3 R 2HEOFEFNIR 1 1ICHETBW .

RIHE S OBEEZ 5. S O 2B OALEEDATHRINCEL Z2IFTETVWARVS
Artin L TitildT&E 22 %245, F=Q(V401) 2 L, L % F @ Hilbert k¥ 3. F OB
hp =57%DT,[L:Fl=5T»%. 8 #%HEN X° - X*-5X34+4X?+3X -1 DB 33, L
X L=F(p) k3. IEAWERIEE ' : Gal(L/F) =2 7Z/5Z — S* % ¥ 1, Hecke {81Z o 2XD Xk
ISBBRTED B

‘]% canonical CL re;F Gal(L/F) R Sl.
ZorE L(s,y(Poo)) = L(s,¢"? L/F) TH2DT, Theorem 4.2 Zi#fH L T,

(04,0y) = g\/zﬁRFL(LW,L/F)



B3 ZZTCRrprEIFOLXaL—&TH5. ZDHBET Petersson NEZ L ¥ 2 L — X THHR
[FICFRT 2 & L HEEETH 2 01 HKEE Dy ICIZEEERTRVD DN HE05THSB. S5 D
X ICHEHRHOAZFFOBUCE L TiX Stark [14] 12 & b HEAD Dedekind (-FAEOEBDFET
PIFBZ DT o TS, 3 DFAREILF 2L — R THRMNICRRTELDTHS. Ly
L7, mdSA/D) (42) @ Ind SUE/D (1) REBITH > T, FIMHEORAET 5 2 2
T Indgoy /2 (%) @ Indgoy /2 () @1 = Indgey 7)1 05 RBORMAEES 5 2 &
BB DT, ROFEXZR5:
(04,04) (Oy2,0,2) = 100R% Ry ~ 12489.3392834563 - - -

TRk BKDLFalL—&XThH3b. IO REVWEBFEHROE - XK THRIBDERZ2EZ L
MTEBD.



PO HRIEAT 2000 AT 088 3 DE XK FIZOoWTh EOFIE AT X 51T Hecke 515 %
EoT Oy ZEDD L ZD, Petersson NHOFTEAMERZ T D/, L = FK 13 F @ Hilbert 3K
Th2. T/, K1 OFNETANT L PBRERBULATH D, [>Ty OBIZ (0,0,0,0) THZ %
AARTHL. #HRE LT, D = 1957 DfITIE (04,0,) = 48RpRx TH D, ZHHDTRTOD
FlT (04,0,) = 24RpRy £7%o7z. FHELTROVWEZ 2 K O hx 8 D = 1957 Ti&
hig =2, ZOMOBITIE hig =1 22T TH 3D, BEOEEBERICOWTIEDD S0,

F o¥HI | K %252 2%HEA (04,04)
229 X3 —4X -1 24Rp Ry ~ 153.338132534474 - - -
257 X3 - X% - 4X +3 | 24RpRp ~ 164.288312812200 - - -
316 X3 - X% _4X +2 | 24RpRg =~ 476.671900506020 - - -
321 X3 — X2 -4X +1 | 24RpRy ~ 373.906198803442 - - -
469 X3 - X2 -5X+4 | 24RpRg ~ 385.974675403784 - - -
473 X3 —-5X -1 24Rp Ry ~ 352.038810858185 - - -
568 X3 - X?2-6X -2 | 24RpRi ~ 826.323808728937 - - -
733 X3 - X2 - 7X +8 | 24RpRyg = 420.123429359158 - - -
761 X3 - X?2-6X -1 | 24RpRg ~ 624.385173601948 - - -
892 X3 - X2 -8X +10 | 24RpRy ~ 1219.47287214903 - - -
993 X3 - X2 -6X+3 | 24RpRg ~ 1143.05632028698 - - -
1016 X3 - X2 -8X +10 | 24RpRyi ~ 1515.54846333741 - - -
1101 X3 — X2 -9X +12 | 24RrRk ~ 1300.42423105114 - - -
1229 X3 - X2 -7X +6 | 24RpRy =~ 702.577174538125- - -
1257 X3 - X2 -8X+9 | 24RpRy ~ 1817.41893556155 - - -
1304 X3 11X -2 24Rp Ry ~ 1853.94787535224 - - -
1373 X3 -8X —5 24Rp Ry ~ 816.743621133275 - - -
1436 X3 11X —12 24Rp Ry ~ 2005.36239366819 - - -
1489 X3 — X2 10X -7 | 24RpRg ~ 1541.21730852376 - - -
1509 X3 - X2 -7X+4 | 24RpRg ~ 1687.45057825062 - - -
1772 X3 — X2 - 12X +8 | 24Rp Ry ~ 2502.87047104155 - - -
1901 X3 - X?2-9X —4 | 24RpRg ~ 1555.03213827395 - - -
1929 X3 — X2 - 10X +13 | 24RpRg ~ 3816.49525210154 - - -
1957 X3 — X2 -9X +10 | 48Rp Ry ~ 1493.04499124585 - - -

£ 1 HIFIED 2000 LR 088 3 DEZ XK E Hecke F8HEIZDWT D Petersson HFE
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